Copied to
clipboard

G = C5×C526C4order 500 = 22·53

Direct product of C5 and C526C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C5×C526C4, C5311C4, C529C20, C528Dic5, C52(C5×Dic5), (C5×C10).9D5, C10.7(C5×D5), (C5×C10).8C10, C10.6(C5⋊D5), (C52×C10).2C2, C2.(C5×C5⋊D5), SmallGroup(500,38)

Series: Derived Chief Lower central Upper central

C1C52 — C5×C526C4
C1C5C52C5×C10C52×C10 — C5×C526C4
C52 — C5×C526C4
C1C10

Generators and relations for C5×C526C4
 G = < a,b,c,d | a5=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 240 in 96 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C4, C5, C5, C5, C10, C10, C10, Dic5, C20, C52, C52, C52, C5×C10, C5×C10, C5×C10, C5×Dic5, C526C4, C53, C52×C10, C5×C526C4
Quotients: C1, C2, C4, C5, D5, C10, Dic5, C20, C5×D5, C5⋊D5, C5×Dic5, C526C4, C5×C5⋊D5, C5×C526C4

Smallest permutation representation of C5×C526C4
On 100 points
Generators in S100
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 40 29 33 42)(2 36 30 34 43)(3 37 26 35 44)(4 38 27 31 45)(5 39 28 32 41)(6 22 13 98 20)(7 23 14 99 16)(8 24 15 100 17)(9 25 11 96 18)(10 21 12 97 19)(46 60 69 53 62)(47 56 70 54 63)(48 57 66 55 64)(49 58 67 51 65)(50 59 68 52 61)(71 87 78 94 85)(72 88 79 95 81)(73 89 80 91 82)(74 90 76 92 83)(75 86 77 93 84)
(1 30 44 38 32)(2 26 45 39 33)(3 27 41 40 34)(4 28 42 36 35)(5 29 43 37 31)(6 12 18 24 99)(7 13 19 25 100)(8 14 20 21 96)(9 15 16 22 97)(10 11 17 23 98)(46 70 64 58 52)(47 66 65 59 53)(48 67 61 60 54)(49 68 62 56 55)(50 69 63 57 51)(71 77 83 89 95)(72 78 84 90 91)(73 79 85 86 92)(74 80 81 87 93)(75 76 82 88 94)
(1 7 51 76)(2 8 52 77)(3 9 53 78)(4 10 54 79)(5 6 55 80)(11 60 85 35)(12 56 81 31)(13 57 82 32)(14 58 83 33)(15 59 84 34)(16 65 90 40)(17 61 86 36)(18 62 87 37)(19 63 88 38)(20 64 89 39)(21 70 95 45)(22 66 91 41)(23 67 92 42)(24 68 93 43)(25 69 94 44)(26 96 46 71)(27 97 47 72)(28 98 48 73)(29 99 49 74)(30 100 50 75)

G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,40,29,33,42)(2,36,30,34,43)(3,37,26,35,44)(4,38,27,31,45)(5,39,28,32,41)(6,22,13,98,20)(7,23,14,99,16)(8,24,15,100,17)(9,25,11,96,18)(10,21,12,97,19)(46,60,69,53,62)(47,56,70,54,63)(48,57,66,55,64)(49,58,67,51,65)(50,59,68,52,61)(71,87,78,94,85)(72,88,79,95,81)(73,89,80,91,82)(74,90,76,92,83)(75,86,77,93,84), (1,30,44,38,32)(2,26,45,39,33)(3,27,41,40,34)(4,28,42,36,35)(5,29,43,37,31)(6,12,18,24,99)(7,13,19,25,100)(8,14,20,21,96)(9,15,16,22,97)(10,11,17,23,98)(46,70,64,58,52)(47,66,65,59,53)(48,67,61,60,54)(49,68,62,56,55)(50,69,63,57,51)(71,77,83,89,95)(72,78,84,90,91)(73,79,85,86,92)(74,80,81,87,93)(75,76,82,88,94), (1,7,51,76)(2,8,52,77)(3,9,53,78)(4,10,54,79)(5,6,55,80)(11,60,85,35)(12,56,81,31)(13,57,82,32)(14,58,83,33)(15,59,84,34)(16,65,90,40)(17,61,86,36)(18,62,87,37)(19,63,88,38)(20,64,89,39)(21,70,95,45)(22,66,91,41)(23,67,92,42)(24,68,93,43)(25,69,94,44)(26,96,46,71)(27,97,47,72)(28,98,48,73)(29,99,49,74)(30,100,50,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,40,29,33,42)(2,36,30,34,43)(3,37,26,35,44)(4,38,27,31,45)(5,39,28,32,41)(6,22,13,98,20)(7,23,14,99,16)(8,24,15,100,17)(9,25,11,96,18)(10,21,12,97,19)(46,60,69,53,62)(47,56,70,54,63)(48,57,66,55,64)(49,58,67,51,65)(50,59,68,52,61)(71,87,78,94,85)(72,88,79,95,81)(73,89,80,91,82)(74,90,76,92,83)(75,86,77,93,84), (1,30,44,38,32)(2,26,45,39,33)(3,27,41,40,34)(4,28,42,36,35)(5,29,43,37,31)(6,12,18,24,99)(7,13,19,25,100)(8,14,20,21,96)(9,15,16,22,97)(10,11,17,23,98)(46,70,64,58,52)(47,66,65,59,53)(48,67,61,60,54)(49,68,62,56,55)(50,69,63,57,51)(71,77,83,89,95)(72,78,84,90,91)(73,79,85,86,92)(74,80,81,87,93)(75,76,82,88,94), (1,7,51,76)(2,8,52,77)(3,9,53,78)(4,10,54,79)(5,6,55,80)(11,60,85,35)(12,56,81,31)(13,57,82,32)(14,58,83,33)(15,59,84,34)(16,65,90,40)(17,61,86,36)(18,62,87,37)(19,63,88,38)(20,64,89,39)(21,70,95,45)(22,66,91,41)(23,67,92,42)(24,68,93,43)(25,69,94,44)(26,96,46,71)(27,97,47,72)(28,98,48,73)(29,99,49,74)(30,100,50,75) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,40,29,33,42),(2,36,30,34,43),(3,37,26,35,44),(4,38,27,31,45),(5,39,28,32,41),(6,22,13,98,20),(7,23,14,99,16),(8,24,15,100,17),(9,25,11,96,18),(10,21,12,97,19),(46,60,69,53,62),(47,56,70,54,63),(48,57,66,55,64),(49,58,67,51,65),(50,59,68,52,61),(71,87,78,94,85),(72,88,79,95,81),(73,89,80,91,82),(74,90,76,92,83),(75,86,77,93,84)], [(1,30,44,38,32),(2,26,45,39,33),(3,27,41,40,34),(4,28,42,36,35),(5,29,43,37,31),(6,12,18,24,99),(7,13,19,25,100),(8,14,20,21,96),(9,15,16,22,97),(10,11,17,23,98),(46,70,64,58,52),(47,66,65,59,53),(48,67,61,60,54),(49,68,62,56,55),(50,69,63,57,51),(71,77,83,89,95),(72,78,84,90,91),(73,79,85,86,92),(74,80,81,87,93),(75,76,82,88,94)], [(1,7,51,76),(2,8,52,77),(3,9,53,78),(4,10,54,79),(5,6,55,80),(11,60,85,35),(12,56,81,31),(13,57,82,32),(14,58,83,33),(15,59,84,34),(16,65,90,40),(17,61,86,36),(18,62,87,37),(19,63,88,38),(20,64,89,39),(21,70,95,45),(22,66,91,41),(23,67,92,42),(24,68,93,43),(25,69,94,44),(26,96,46,71),(27,97,47,72),(28,98,48,73),(29,99,49,74),(30,100,50,75)]])

140 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5BL10A10B10C10D10E···10BL20A···20H
order124455555···51010101010···1020···20
size11252511112···211112···225···25

140 irreducible representations

dim1111112222
type+++-
imageC1C2C4C5C10C20D5Dic5C5×D5C5×Dic5
kernelC5×C526C4C52×C10C53C526C4C5×C10C52C5×C10C52C10C5
# reps11244812124848

Matrix representation of C5×C526C4 in GL5(𝔽41)

100000
018000
001800
000370
000037
,
10000
037000
001000
000180
000016
,
10000
01000
00100
000160
000018
,
90000
00100
01000
00001
00010

G:=sub<GL(5,GF(41))| [10,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,37,0,0,0,0,0,37],[1,0,0,0,0,0,37,0,0,0,0,0,10,0,0,0,0,0,18,0,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,18],[9,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0] >;

C5×C526C4 in GAP, Magma, Sage, TeX

C_5\times C_5^2\rtimes_6C_4
% in TeX

G:=Group("C5xC5^2:6C4");
// GroupNames label

G:=SmallGroup(500,38);
// by ID

G=gap.SmallGroup(500,38);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,1603,10004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽